Acetic Acid Acts as a Volatile Signal To Stimulate Bacterial Biofilm Formation
نویسندگان
چکیده
UNLABELLED Volatiles are small air-transmittable chemicals with diverse biological activities. In this study, we showed that volatiles produced by the bacterium Bacillus subtilis had a profound effect on biofilm formation of neighboring B. subtilis cells that grew in proximity but were physically separated. We further demonstrated that one such volatile, acetic acid, is particularly potent in stimulating biofilm formation. Multiple lines of genetic evidence based on B. subtilis mutants that are defective in either acetic acid production or transportation suggest that B. subtilis uses acetic acid as a metabolic signal to coordinate the timing of biofilm formation. Lastly, we investigated how B. subtilis cells sense and respond to acetic acid in regulating biofilm formation. We showed the possible involvement of three sets of genes (ywbHG, ysbAB, and yxaKC), all encoding putative holin-antiholin-like proteins, in cells responding to acetic acid and stimulating biofilm formation. All three sets of genes were induced by acetate. A mutant with a triple mutation of those genes showed a severe delay in biofilm formation, whereas a strain overexpressing ywbHG showed early and robust biofilm formation. Results of our studies suggest that B. subtilis and possibly other bacteria use acetic acid as a metabolic signal to regulate biofilm formation as well as a quorum-sensing-like airborne signal to coordinate the timing of biofilm formation by physically separated cells in the community. IMPORTANCE Volatiles are small, air-transmittable molecules produced by all kingdoms of organisms including bacteria. Volatiles possess diverse biological activities and play important roles in bacteria-bacteria and bacteria-host interactions. Although volatiles can be used as a novel and important way of cell-cell communication due to their air-transmittable nature, little is known about how the volatile-mediated signaling mechanism works. In this study, we demonstrate that the bacterium Bacillus subtilis uses one such volatile, acetic acid, as a quorum-sensing-like signal to coordinate the timing of the formation of structurally complex cell communities, also known as biofilms. We further characterized the molecular mechanisms of how B. subtilis responds to acetic acid in stimulating biofilm formation. Our study also suggests that acetic acid may be used as a volatile signal for cross-species communication.
منابع مشابه
A bacterial volatile signal for biofilm formation
Bacteria constantly monitor the environment they reside in and respond to potential changes in the environment through a variety of signal sensing and transduction mechanisms in a timely fashion. Those signaling mechanisms often involve application of small, diffusible chemical molecules. Volatiles are a group of small air-transmittable chemicals that are produced universally by all kingdoms of...
متن کاملEffect of Benzalkonium Chloride on Biofilm of Bacteria Causing Nosocomial Infectionstions
ABSTRACT Background and Objective: Biofilms are community of bacteria that attach to inanimate surfaces or living tissues via production of extracellular polymers and exopolysaccharide matrix. Microbial biofilms on various surfaces of the hospital environment are considered as a reservoir of infection spread. The present study aimed to evalu...
متن کاملCallus formation, regeneration and volatile constituents production in Teucrium chamaedrys tissue culture
Teucrium chamaedrys is regarded as an herbaceous perennial plant from Lamiaceae family that is used as medicinal plants and food from ancient times. Due to the recent developments in tissue culture techniques and extraction of secondary metabolites, this study aimed to investigate the explants of the Teucrium for callus induction and secondary metabolites. The interaction of Auxin hormones incl...
متن کاملAnti-inflammatory effect of Pistacia atlantica subsp. kurdica volatile oil and gum on acetic acid-induced acute colitis in rat
Background and objectives: Baneh tree or Pistacia atlantica subsp. kurdica is an endemic plant of Iran which belongs to Anacardiaceae family. It has various traditional uses including astringent and anti-diarrheal as well as improving some of the symptoms of gastrointestinal upsets. In this study we decided to investigate the effects of various fractions of baneh gum ...
متن کاملEffects of biofilm formation in bacteria from different perspectives
Bacterial communities are able to form complex and three-dimensional biofilm structures. Biofilm formation is an ancient and integral component of the prokaryotic life cycle and a key factor for survival in diverse niches. In biofilms, bacterial lifestyle changes from free-floating cells to sessile cells. Presence in biofilms gives new traits to bacteria, which distinguish them from free cells....
متن کامل